18.950 Handout 4. Inverse and Implicit Function Theorems.

Theorem 1 (Inverse Function Theorem). Suppose $U \subset \mathbf{R}^{n}$ is open, $f: U \rightarrow \mathbf{R}^{n}$ is $C^{1}, x_{0} \in U$ and $d f_{x_{0}}$ is invertible. Then there exists a neighborhood V of x_{0} in U and a neighborhood W of $f\left(x_{0}\right)$ in \mathbf{R}^{n} such that f has a C^{1} inverse $g=f^{-1}: W \rightarrow V$. (Thus $f(g(y))=y$ for all $y \in W$ and $g(f(x))=x$ for all $x \in V$.) Moreover,

$$
d g_{y}=\left(d f_{g(y)}\right)^{-1} \quad \text { for all } y \in W
$$

and g is smooth whenever f is smooth.
Remark. The theorem says that a continuously differentiable function f between regions in \mathbf{R}^{n} is locally invertible near points where its differential is invertible.

Proof. Without loss of generality, we may assume that $x_{0}=0, f\left(x_{0}\right)=0$ and $d f_{x_{0}}=I$. (Otherwise, replace f with $\widetilde{f}(x)=d f_{x_{0}}^{-1}\left(f\left(x+x_{0}\right)-f\left(x_{0}\right)\right)$. Note that if the theorem holds with $\widetilde{f}, 0,0, I$ and a function \widetilde{g} in place of f $x_{0}, f\left(x_{0}\right), d f_{x_{0}}$ and g respectively, then it is easily verified that the theorem as stated holds with $g(y)=x_{0}+\widetilde{g}\left(d f_{x_{0}}^{-1}\left(y-f\left(x_{0}\right)\right)\right)$.)

Since $d f_{x}$ is continuous in x at x_{0} (see Exercise 1), there exists a number $r>0$ such that

$$
x \in \bar{B}_{r}(0) \Longrightarrow\left\|d f_{x}-I\right\| \leq \frac{1}{2}
$$

(Recall that for a linear transformation $A: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ we define the norm of A by $\|A\|=\sup _{\{|v| \leq 1\}}|A(v)|$.) Fix $y \in B_{r / 2}(0)$. Define a function ϕ by

$$
\phi(x)=x-f(x)+y .
$$

Note that $d \phi_{x}=I-d f_{x}$ and hence

$$
\left\|d \phi_{x}\right\| \leq 1 / 2 \quad \text { if } x \in \bar{B}_{r}(0)
$$

Thus

$$
\begin{align*}
|\phi(x)| & \leq|\phi(x)-y|+|y|=\left|\int_{0}^{1} \frac{d}{d t} \phi(t x) d t\right|+|y| \\
& =\left|\int_{0}^{1} d \phi_{t x} \cdot x d t\right|+|y| \leq \int_{0}^{1}\left\|d \phi_{t x}\right\||x| d t+|y| \\
& \leq r / 2+r / 2=r \tag{1}
\end{align*}
$$

whenever $x \in \bar{B}_{r}(0)$. i.e. ϕ is a map from $\bar{B}_{r}(0)$ into itself. For any $x, z \in$ $\bar{B}_{r}(0)$,

$$
\begin{aligned}
|\phi(z)-\phi(x)| & =\left|\int_{0}^{1} \frac{d}{d t} \phi(x+t(z-x)) d t\right| \\
& \leq \int_{0}^{1}\left|d \phi_{x+t(z-x)} \cdot(z-x)\right| d t \\
& \leq \int_{0}^{1} \| d \phi_{x+t(z-x)}| | z-x \mid d t \\
& \leq \frac{1}{2}|z-x|
\end{aligned}
$$

Thus $\phi: \bar{B}_{r}(0) \rightarrow \bar{B}_{r}(0)$ is a contraction, and hence ϕ has a unique fixed point $x_{y} \in \bar{B}_{r}(0)$. i.e. there is a unique point $x_{y} \in \bar{B}_{r}(0)$ with $f\left(x_{y}\right)=y$. In fact $x_{y} \in B_{r}(0)$ since $\frac{r}{2}>|y|=\left|f\left(x_{y}\right)\right| \geq\left|x_{y}\right|-\left|x_{y}-f\left(x_{y}\right)\right| \geq\left|x_{y}\right|-\frac{1}{2}\left|x_{y}\right|=$ $\frac{1}{2}\left|x_{y}\right|$. Set $W=B_{r / 2}(0)$ and $V=f^{-1}(W) \cap B_{r}(0)$. Note then that V is open. Define $g: W \rightarrow V$ by $g(y)=x_{y}$. Then $f(g(y))=y$ for all $y \in W$ and $g(f(x))=x$ for all $x \in V$.

Next we show that g is differentiable, with $d g_{y}=\left(d f_{g(y)}\right)^{-1}$. First note that with $\psi: B_{r}(0) \rightarrow \mathbf{R}^{n}$ defined by $\psi(x)=x-f(x)$, we have that for $x_{1}, x_{2} \in B_{r}(0)$,

$$
\begin{aligned}
\left|x_{1}-x_{2}\right|-\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| & \leq\left|\left(x_{1}-x_{2}\right)-\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)\right| \\
& \leq\left|\psi\left(x_{1}\right)-\psi\left(x_{2}\right)\right| \\
& \leq \frac{1}{2}\left|x_{1}-x_{2}\right|
\end{aligned}
$$

where the last inequality follows by estimating as in (1), using $d \psi_{x}=I-d f_{x}$. Hence

$$
\frac{1}{2}\left|x_{1}-x_{2}\right| \leq\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|
$$

for any $x_{1}, x_{2} \in B_{r}(0)$, which implies

$$
\begin{equation*}
\left|g\left(y_{1}\right)-g\left(y_{2}\right)\right| \leq 2\left|y_{1}-y_{2}\right| \tag{2}
\end{equation*}
$$

for any $y_{1}, y_{2} \in W=B_{r / 2}(0)$. In particular, g is continuous.

Now fix $y \in W$, and let $A=d f_{g(y)}$. Since W is open, there exists $\delta>0$ such that $y+k \in W$ if $k \in B_{\delta}(0)$. Let $h=g(y+k)-g(y)$. Then $k=$ $y+k-y=f(g(y+k))-f(g(y))=f(g(y)+h)-f(g(y))$ and hence, for $k \in B_{\delta}(0) \backslash\{0\}$,

$$
\begin{align*}
\frac{\left|g(y+k)-g(y)-A^{-1} k\right|}{|k|} & =\frac{\left|A^{-1}(A h-k)\right|}{|h|} \frac{|h|}{|k|} \\
& \leq \frac{\left\|A^{-1}\right\||k-A h|}{|h|} \frac{|h|}{|k|} \\
& \leq 2 \frac{\left\|A^{-1}\right\|| | f(g(y)+h)-f(g(y))-A h \mid}{|h|} \tag{3}
\end{align*}
$$

where the last estimate follows from (2). Note that since $g(y+k)=g(y) \Longrightarrow$ $f(g(y+k))=f(g(y)) \Longrightarrow y+k=y \Longrightarrow k=0$, we have that $h \neq 0$ if $k \neq 0$. Sice $A=d f_{g(y)}$, it follows from the definition of differentiability of f that the right hand side of (3) tends to 0 as $h \rightarrow 0$, and hence, since $|h| \leq 2|k|$ by (2), it follows that

$$
\lim _{k \rightarrow 0} \frac{\left|g(y+k)-g(y)-A^{-1} k\right|}{|k|}=0 .
$$

i.e. g is differentiable at y and

$$
\begin{equation*}
d g_{y}=\left(d f_{g(y)}\right)^{-1} \tag{4}
\end{equation*}
$$

Finally, note that the function $y \mapsto d g_{y}$ is the composition of the function $y \mapsto d f_{g(y)}$ and matrix inversion $A \mapsto A^{-1}$. Matrix inversion is a smooth map of the entries, and the function $y \mapsto d f_{g(y)}$ is continuous since g is continuous and f is C^{1}. Hence we conclude that $y \mapsto d g_{y}$ is continuous; i.e. that g is C^{1}. Repeatedly differentiating (4) shows that g is smooth if f is smooth.

Exercise 1. Let $L\left(\mathbf{R}^{n} ; \mathbf{R}^{n}\right)$ be the set of linear transformations from \mathbf{R}^{n} into itself with the metric $d(A, B)=\|A-B\|$. (cf. Exercise 10 of handout 1.) Let $U \subset \mathbf{R}^{n}$ be open and $f: U \rightarrow \mathbf{R}^{n}$ be a C^{1} function. Show that the map $x \mapsto d f_{x}$ is continuous as a map from U into $L\left(\mathbf{R}^{n} ; \mathbf{R}^{n}\right)$.

Exercise 2. Suppose $g:[a, b] \rightarrow \mathbf{R}^{n}$ is continuous. Show that

$$
\left|\int_{a}^{b} g(t) d t\right| \leq \int_{a}^{b}|g(t)| d t
$$

where $|\cdot|$ denotes the Euclidean norm. You may use without proof that $\left|\int_{a}^{b} h(t) d t\right| \leq \int_{a}^{b}|h(t)| d t$ for a scalar valued function h.

Exercise 3. Define $f: \mathbf{R} \rightarrow \mathbf{R}$ by $f(x)=\frac{x}{2}+x^{2} \sin \frac{1}{x}$ if $x \neq 0$ and $f(0)=0$. Compute $f^{\prime}(x)$ for all $x \in \mathbf{R}$. Show that $f^{\prime}(0)>0$, yet f is not one-to-one in any neighborhood of 0 . This example shows that in the Inverse Function Theorem, the hypothesis that f is C^{1} cannot be weakened to the hypothesis that f is differentiable.

Exercise 4. Define $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$. Show that f is C^{1} and that $d f_{(x, y)}$ is invertible for all $(x, y) \in \mathbf{R}^{2}$ and yet f is not a one-to-one function globally. Why doesn't this contradict the Inverse Function Theorem?

Next we prove the Implicit Function Theorem. This theorem gives conditions under which one can solve, locally, a system of equations

$$
f_{i}(x, y)=0, \quad i=1,2, \ldots n
$$

where $x \in \mathbf{R}^{m}$ and $y \in \mathbf{R}^{n}$, for y in terms of x. (Thus, $y=\left(y_{1}, \ldots, y_{n}\right)$ where y_{1}, \ldots, y_{n} are regarded as n unknowns, satisfying the n equations $f_{i}(x, y)=0, i=1, \ldots, n$.) Geometrically, the set of solutions (x, y) to the system of equations is the graph of a function $y=g(x)$. Note that we have from linear algebra that if for each i, the function f_{i} is linear with constant coefficients in the variables y_{j}, then whenever the (constant) $n \times n$ matrix $\left(\frac{\partial f_{i}}{\partial y_{j}}\right)_{1 \leq i, j \leq n}$ is invertible, the system of equations is solvable for y in terms of x. Implicit function theorem says that whenever f_{i} are C^{1} and this matrix is invertible at a point (a, b), then the system is solvable for y in terms of x locally in a neighborhood of (a, b).

We shall use the following notation: For an \mathbf{R}^{n} valued function $f(x, y)=$ $\left(f_{1}(x, y), f_{2}(x, y), \ldots, f_{n}(x, y)\right)$ in a domain $U \subset \mathbf{R}^{m+n} \equiv \mathbf{R}^{m} \times \mathbf{R}^{n}$, where $x \in \mathbf{R}^{m}, y \in \mathbf{R}^{n}$, we shall denote by $d_{x} f$ the partial differential represented by the $n \times m$ matrix $\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq m}$ and by $d_{y} f$ the partial differential represented by the $n \times n$ matrix $\left(\frac{\partial f_{i}}{\partial y_{j}}\right)_{1 \leq i, j \leq n}$.

Theorem 2 (Implicit Function Theorem). Let $U \subset \mathbf{R}^{m+n} \equiv \mathbf{R}^{m} \times \mathbf{R}^{n}$ be an open set, $f: U \rightarrow \mathbf{R}^{n}$ a C^{1} function, $(a, b) \in U$ a point such that $f(a, b)=0$ and $\left.d_{y} f\right|_{(a, b)}$ invertible. Then there exists a neighborhood V of
(a, b) in U, a neighborhood W of a in \mathbf{R}^{m} and a C^{1} function $g: W \rightarrow \mathbf{R}^{n}$ such that

$$
\{(x, y) \in V: f(x, y)=0\}=\{(x, g(x)): x \in W\}
$$

Moreover,

$$
d g_{x}=-\left.\left.\left(d_{y} f\right)^{-1}\right|_{(x, g(x))} d_{x} f\right|_{(x, g(x))}
$$

and g is smooth if f is smooth.
Proof. Define $F: U \rightarrow \mathbf{R}^{m+n}$ by $F(x, y)=(x, f(x, y))$. Then F is C^{1} in $U, F(a, b)=(a, 0)$ and $\operatorname{det} d F_{(a, b)}=\left.\operatorname{det} d_{y} f\right|_{(a, b)} \neq 0$. Hence by the Inverse Function Theorem, F has a C^{1} inverse $F^{-1}: \widetilde{W} \rightarrow V$ for neighborhoods V of (a, b) and \widetilde{W} of $(a, 0)$ in $\mathbf{R}^{m} \times \mathbf{R}^{n}$. Set $W=\left\{x \in \mathbf{R}^{m}:(x, 0) \in \widetilde{W}\right\}$. Then W is open in \mathbf{R}^{m}. Note then that if $x \in W$, then $(x, 0) \in \widetilde{W}$ so that $(x, 0)=F\left(x_{1}, y_{1}\right)$ where $\left(x_{1}, y_{1}\right) \in V$ is uniquely determined by x. (In fact, by the definition of $F, x_{1}=x$.) Define $g: W \rightarrow \mathbf{R}^{n}$ by setting $y_{1}=g(x)$. Thus $g(x)$ is defined by $F^{-1}(x, 0)=(x, g(x))$; i.e. by $g(x)=\pi \circ F^{-1}(x, 0)$ where $\pi: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is the projection map $\pi(x, y)=y$. Then $\{(x, y) \in$ $V: f(x, y)=0\}=\{(x, y) \in V: F(x, y)=(x, 0)\}=\{(x, g(x)): x \in W\}$. Since π is a smooth map and F^{-1} is C^{1}, it follows that g is C^{1}. The formula for $d g_{x}$ follows by differentiating the identity

$$
f(x, g(x)) \equiv 0 \quad \text { on } W
$$

using the chain rule. By repeatedly differentiating this identity, it follows that g is smooth if f is smooth.

