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18.950 Handout 4. Inverse and Implicit Function Theorems. 

Theorem 1 (Inverse Function Theorem). Suppose U ⊂ Rn is open, 
f : U → Rn is C1 , x0 ∈ U and dfx0 is invertible. Then there exists a 
neighborhood V of x0 in U and a neighborhood W of f(x0) in Rn such that 
f has a C1 inverse g = f−1 : W → V. (Thus f(g(y)) = y for all y ∈ W 
and g(f(x)) = x for all x ∈ V .) Moreover, 

dgy = (dfg(y))
−1 for all y ∈W 

and g is smooth whenever f is smooth. 

Remark. The theorem says that a continuously differentiable function f 
between regions in Rn is locally invertible near points where its differential 
is invertible. 

Proof. Without loss of generality, we may assume that x0 = 0, f(x0) = 0 
and dfx0 = I. (Otherwise, replace f with f(x) = df−1(f(x + x0) − f(x0)).x0 

Note that if the theorem holds with f, 0, 0, I and a function g� in place of f 
x0, f(x0), dfx0 and g respectively, then it is easily verified that the theorem 
as stated holds with g(y) = x0 + g�(df−1(y − f(x0))).) x0 

Since dfx is continuous in x at x0 (see Exercise 1), there exists a number 
r > 0 such that 

1 
x ∈ Br(0) = dfx − I� ≤ 

2
.⇒ �

(Recall that for a linear transformation A : Rn Rm we define the norm →
of A by �A� = sup{|v|≤1} A(v) .) Fix y ∈ Br/2(0). Define a function φ by | |

φ(x) = x − f(x) + y. 

Note that dφx = I − dfx and hence 

�dφx� ≤ 1/2 if x ∈ Br(0). 

Thus � 1 d |φ(x) φ(x)− y + y = φ(tx)dt|+ y| ≤ | | | | | 
dt 

| |
0� 1 � 1 

= dφtx · xdt|+ y �dφtx�|x dt + y| | | ≤ | | |
0 0 

≤ r/2 + r/2 = r (1) 
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whenever x ∈ Br(0). i.e. φ is a map from Br(0) into itself. For any x, z ∈
Br(0), 

=

� 1 d 

φ(z)− φ(x) φ(x + t(z − x))dt| | 
dt 0 � 1 

dφx+t(z−x) · (z − x) dt≤ 
0 
| |� 1 

�dφ dt ≤ 
0 

x+t(z−x)�|z − x|

1 
.z − x≤ 

2
| |

Thus φ : Br(0) → Br(0) is a contraction, and hence φ has a unique fixed 
point xy ∈ Br(0). i.e. there is a unique point xy ∈ Br(0) with f(xy) = y. In 

1fact xy ∈ Br(0) since r > y = f(xy) xy − f(xy)2 | | | ≥ |xy|− | | ≥ |xy|− 2 |xy| = 
1 xy . Set W = Br/2(0) and V =

|
f−1(W )∩ Br(0). Note then that V is open. 2 | |

Define g : W → V by g(y) = xy. Then f(g(y)) = y for all y ∈ W and 
g(f(x)) = x for all x ∈ V. 

Next we show that g is differentiable, with dgy = (dfg(y))−1 . First note 
that with ψ : Br(0) → Rn defined by ψ(x) = x − f(x), we have that for 
x1, x2 ∈ Br(0), 

x1 − x2 f(x1)− f(x2) (x1 − x2)− (f(x1)− f(x2))| | − | | ≤ | |
ψ(x1)− ψ(x2)≤ |
1 

| 

x1 − x2≤ 
2
| | 

where the last inequality follows by estimating as in (1), using dψx = I−dfx. 
Hence 

1 
x1 − x2 f(x1)− f(x2)2
| | ≤ | | 

for any x1, x2 ∈ Br(0), which implies 

g(y1)− g(y2) y1 − y2 (2)| | ≤ 2| | 

for any y1, y2 ∈ W = Br/2(0). In particular, g is continuous. 
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Now fix y ∈ W , and let A = dfg(y). Since W is open, there exists δ > 0 
such that y + k ∈ W if k ∈ Bδ(0). Let h = g(y + k) − g(y). Then k = 
y + k − y = f(g(y + k)) − f(g(y)) = f(g(y) + h) − f(g(y)) and hence, for 
k ∈ Bδ(0) \ {0}, 

g(y + k)− g(y)− A−1k A−1(Ah − k) h| 
= 

|
h

| |
k

|
|
|k| | | | |


h≤ �A−1�|
|h
k 

|
− Ah| |

|k|
| 

≤ 2
�A−1�|f(g(y) + 

|
h

h

)
|
− f(g(y)) − Ah| 

(3) 

where the last estimate follows from (2). Note that since g(y+k) = g(y) = ⇒
f(g(y + k)) = f(g(y)) = y + k = y = k = 0, we have that h =� 0⇒ ⇒
if k =� 0. Sice A = dfg(y), it follows from the definition of differentiability 
of f that the right hand side of (3) tends to 0 as h → 0, and hence, since 
h k by (2), it follows that | | ≤ 2| | 

g(y + k)− g(y)− A−1k
lim 

| | 
= 0. 

k 0 k→ | |
i.e. g is differentiable at y and 

dgy = (dfg(y))
−1 . (4) 

Finally, note that the function y �→ dgy is the composition of the function 
y �→ dfg(y) and matrix inversion A �→ A−1 . Matrix inversion is a smooth map 
of the entries, and the function y �→ dfg(y) is continuous since g is continuous 
and f is C1 . Hence we conclude that y �→ dgy is continuous; i.e. that g is 
C1 . Repeatedly differentiating (4) shows that g is smooth if f is smooth. 

Exercise 1. Let L(Rn;Rn) be the set of linear transformations from Rn 

into itself with the metric d(A, B) = �A − B�. (cf. Exercise 10 of handout 
1.) Let U ⊂ Rn be open and f : U Rn be a C1 function. Show that the → 
map x �→ dfx is continuous as a map from U into L(Rn;Rn). 

Exercise 2. Suppose g : [a, b] Rn is continuous. Show that → � b � b 

|g(t) dt≤ |
a 

g(t)dt

a 
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where | |
h(t)dt 

denotes the Euclidean norm. You may use without proof that ·� b � b 
h(t) dt for a scalar valued function h.≤ a | |a 

xExercise 3. Define f : R → R by f(x) = 2 + x2 sin 1 if x =� 0 and x 
f(0) = 0. Compute f �(x) for all x ∈ R. Show that f �(0) > 0, yet f is not 
onetoone in any neighborhood of 0. This example shows that in the Inverse 
Function Theorem, the hypothesis that f is C1 cannot be weakened to the 
hypothesis that f is differentiable. 

Exercise 4. Define f : R2 R2 by f(x, y) = (ex cos y, ex sin y). Show →
that f is C1 and that df(x,y) is invertible for all (x, y) ∈ R2 and yet f is 
not a onetoone function globally. Why doesn’t this contradict the Inverse 
Function Theorem? 

Next we prove the Implicit Function Theorem. This theorem gives con
ditions under which one can solve, locally, a system of equations 

fi(x, y) = 0, i = 1, 2, . . . n 

where x ∈ Rm and y ∈ Rn, for y in terms of x. (Thus, y = (y1, . . . , yn) 
where y1, . . . , yn are regarded as n unknowns, satisfying the n equations 
fi(x, y) = 0, i = 1, . . . , n.) Geometrically, the set of solutions (x, y) to the 
system of equations is the graph of a function y = g(x). Note that we have 
from linear algebra that if for each i, the function fi is linear with constant 
coefficients in the variables yj , then whenever the (constant) n × n matrix 

∂ fi is invertible, the system of equations is solvable for y in terms ∂ yj 1≤i,j≤n 

of x. Implicit function theorem says that whenever fi are C1 and this matrix 
is invertible at a point (a, b), then the system is solvable for y in terms of x 
locally in a neighborhood of (a, b). 

We shall use the following notation: For an Rn valued function f(x, y) = 
(f1(x, y), f2(x, y), . . . , fn(x, y)) in a domain U ⊂ Rm+n ≡ Rm × Rn, where 

, y ∈ Rn, we shall denote by d f the partial differential represented x ∈ Rm 
x 

∂ fiby the n× m matrix and by dy f the partial differential ∂ xj 1≤i≤n,1≤j≤m 

represented by the n× n matrix ∂ fi 

∂ yj 1≤i,j≤n 
. 

Theorem 2 (Implicit Function Theorem). Let U ⊂ Rm+n ≡ Rm × Rn 

be an open set, f : U → Rn a C1 function, (a, b) ∈ U a point such that 
f(a, b) = 0 and dyf |(a,b) invertible. Then there exists a neighborhood V of 
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(a, b) in U , a neighborhood W of a in Rm and a C1 function g : W Rn →
such that 

{(x, y) ∈ V : f(x, y) = 0} = {(x, g(x)) : x ∈ W} . 

Moreover, 

dgx = − (dy f)−1 

(x,g(x)) 
dx f (x,g(x))|

(a,b) �

and g is smooth if f is smooth. 

Rm+nProof. Define F : U by F (x, y) = (x, f(x, y)). Then F is C1 in→
U, F (a, b) = (a, 0) and det dF(a,b) = det dy f | = 0. Hence by the Inverse 

F has a C1 inverse F−1 : WFunction Theorem, V for neighborhoods → 
{x ∈ RmV of (a, b) and
W of (a, 0) in Rm 

Then W is open in Rm 

: (x, 0) ∈ W}. 
. Note then that if x ∈ W , then (x, 0) ∈ W so that 

(x, 0) = F (x1, y1) where (x1, y1) ∈ V is uniquely determined by x. (In fact, 
by the definition of F , x1 = x.) Define g : W Rn by setting y1 = g(x).→
Thus g(x) is defined by F−1(x, 0) = (x, g(x)); i.e. by g(x) = π F−1(x, 0)◦
where π : Rm × Rn → Rn is the projection map π(x, y) = y. Then {(x, y) ∈
V : f(x, y) = 0} = {(x, y) ∈ V : F (x, y) = (x, 0)} = {(x, g(x)) : x ∈ W}. 
Since π is a smooth map and F−1 is C1, it follows that g is C1 . The formula 
for dgx follows by differentiating the identity 

f(x, g(x)) ≡ 0 on W 

using the chain rule. By repeatedly differentiating this identity, it follows 
that g is smooth if f is smooth. 

× Rn. Set W = 
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